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Abstract. The dispersion relation for the electromagnetic wave-guided oscillations of a two- 
dimensional ( 2 ~ - )  electron layer periodic array in a transversal magnetic field is analysed. 
Oscillation frequencies much lower than the electron cyclotron frequency exist under certain 
conditions. Additionally, the perpendicular propagation to the layers is investigated. It is 
demonstrated, that a strong magnetic field causes a frequency shift and splitting, which are 
in inverse relation to the external magnetic field and the period of the layered electron 
system. 

1. Introduction 

The spectrum of electronic collective excitations in semiconductor superlattices has 
received much attention both from a theoretical as well as from an experimental point 
of view [ 1,2].  In particular, much attention has been focused on elementary excitations 
in semiconductor supperlattices in an external magnetic field [3-lo]. The dispersion 
relation of the cyclotron waves for a layered electron system in the Voigt configuration 
with a static magnetic field perpendicular to the planes was derived in [3]. Tselis and co- 
workers [4] obtained the dispersion relation for the frequency of collective excitations 
in a superlattice as a function of the components of the wave vector parallel and 
perpendicular to the layers. The microscopic quantised approach of magnetoplasmons 
given in [4] was compared with the semiclassical description of plasma excitations in a 
multilayer system with finite layer electron thickness [5]. As a result of [4,5], the 
existence of helicon waves propagating along the superlattice axis was demonstrated. 
The presence of these low-frequency modes was previously suggested in [6] on the 
basis of experimental studies of magnetic field dependence of far infrared transmission 
through highly doped InAs/GaSb superlattices. 

Helicons in multilayer systems have frequencies below the cyclotron frequency of 
the low-dimensional carriers and exhibit branch-folding effects due to the macroscopic 
periodicity of the superlattice. In the low frequency regime the helicon frequency is 
inversely proportional to the Hall conductivity of the z~-electron gas, i.e., the helicon 
frequency is proportional to the applied magnetic field. Under the conditions of the 
quantum Hall effect, plateaus in the frequency of the helicon resonance should be 
observed [4]. In this case low-frequency helicon modes behave like helicons propagating 

0953-8984/90/296279 + 08 $03.50 @ 1990 IOP Publishing Ltd 6279 



J C Granada et a1 

in a homogeneous medium, but showing undamping [7]. The role of collision-induced 
instabilities [8], of non-local effects [9] and of polarisation and displacement currents on 
the helicon wave propagation [lo] have also been considered. 

In experimental investigations of the high frequency absorption by a 2~ electron gas 
trapped on the liquid 4He surface , electromagnetic resonance frequencies much lower 
than the electron cyclotron frequency and depending inversely on the external magnetic 
field were observed [ l l ] .  A model of ‘edge’ magnetoplasmons was proposed for the 
theoretical explanation of these resonances [12]. It was shown, that ‘edge’ magneto- 
plasmons can propagate in systems containing inhomogeneous 2~ electron gas. 

On the other hand, in previous papers [13] the spectrum of magnetoplasma wave- 
guided oscillations of a single 2~ homogeneous electron layer in a bounded system was 
described. It was demonstrated that a strong magnetic field causes a frequency shift and 
splitting, depending inversely on the external magnetic field. The fact that such a mode 
exists in an unbounded system along the layer plane electron system tells us that this 
magnetoplasma mode has a different physical origin from the edge magnetoplasmon. 

In this paper magnetoplasma oscillations of the wave-guided type in semiconductor 
superlattices are studied. We shall demonstrate that oscillation frequencies much lower 
than the electron cyclotron frequency and depending inversely on the external magnetic 
field can exist, under certain conditions, in a periodic array of homogeneous 2~ electron 
layers. Let us note that for the case of a zero magnetic field modes of the wave-guided 
type in a superlattice were previously described by Korzh and Kosevich [ 141, 

2. The superlattice structure model 

The model we have adopted to describe the superlattice structure consists of a periodic 
array of strictly 2~ electron layers at the positions z = nd, where n = 0, I t l ,  22,  . , , is 
the layer index, and d is the distance between adjacent layers. The array is embedded 
in a homogeneous dielectric medium with dielectric permittivity E .  A static magnetic field 
Ho is applied along the direction perpendicular to the planes. The vibration spectrum of 
the described system can be obtained by writing the general solution of the wave equation 
in the regions between the electron layers, assuming that the electric field of the collective 
excitations forms a Bloch wave, and imposing the standard electromagnetic boundary 
conditions at each of the 2~ electron layers. In the local limit k 4 k F  ( k F  being the Fermi 
wavevector of a 2~ electron gas, and k being the component of the wavevector of the 
collective excitation parallel to the layers) the resulting dispersion relation is given by 

( 0 2  + (Qca/24S(a,  q))(1 + (Q/2ccu)S(a7 4) )  = w i  

where a = (w2€ /c2  - k2) ‘ /2 ,  SZ = 4ne2q0/m*c, w H  = eHo/m*c, m* = m(l + i /ut ) ,  e, 
m, qo and z are, respectively, the charge, the effective mass, the surface density and the 
relaxation time of the 2D carriers. The superlattice structure factor S(a ,  q )  is given by 
the following expression 

S(a,  q )  = sin(ad)/[cos(ad) - cos(qd)] 

where ?iq is the quasi-impulse of the collective excitations along the superlattice axis [ 151. 
Let us note that the dispersion relation (1) emerges from the microscopic quantised 
approach given in [4] when the spatial dispersion in the components of the dynamical 
magnetoconductivity tensor of the electron system is neglected and it is assumed that 
between w and k the relation w2 > c2k2/& takes place. 
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We have written the dispersion relation (1) in a form, which permits us to describe 
the electromagnetic waves of the wave-guided type interacting with the periodic array 
of 2~ electron layers (for these modes a2 > 0). In the following discussion we assume 
that the frequencies under consideration are much higher than the inverse relaxation 
time of the 2~ carriers (ut % 1). 

3. Analysis of the model 

First of all we analyse (1) in the close vicinity of the line w = c k / d 2 .  In this case the 
coupling between layers is strong (i.e. ad 4 1) and (1) can be written in the form 

w 2  = wg + {(a2d2/2 - 2 sin2(qd/2))-' 

- $w&d2 E(s$/c~ + 2 ~ i n ~ ( q d / 2 ) ) - ~ }  w 2  za d . (2) 

Here wpl = ( S ~ C / E ~ ) ' / ~  is the frequency of the 3D plasmon with effective bulk density 
nB = qo/d ;so  = (S~C~/E) ' /*  is thecharacteristicphasevelocityof an 'acoustic'z~plasmon 
[16]; finally, the squared frequency w$ is given by 

w $  = 2 sin2(qd/2)w&/[2 sin2(qd/2) + ( S ~ / C ) ~ E ] .  (3) 
For qd = 0 (2) takes the following form 

If we put here a! = 0, we can find the frequency at the point where the curve w = w ( k ,  q )  
intersects the line w = c k / d 2 .  At this point the frequency of the excitation is w = opl , 
i.e. the qd = 0 mode in the strong coupling limit is just like a 3~ plasmon, propagating 
with a group velocity given by 

uo = (do/dk).=. = (w&/(w& + o $ ) ) c / E ' / ~ .  ( 5 )  

We can see that under the condition wH < wpl this group velocity depends on the 
external magnetic field: in this case uo = ( u o  4 e). On the other hand, if the 
parameter relation wH % wpl takes place, the group velocity of the qd = 0 mode coincides 
with the velocity of propagation of an electromagnetic wave in a medium with dielectric 
permittivity E (vo = As a result of the above consideration, we can state that in 
the close vicinity of the point a! = 0, w = wpl a slowly increasing oscillation frequency is 
observed when the electron cyclotron frequency is lower than wpl. Let us remark that 
this oscillation frequency depends on the squared external magnetic field. 

For qd # 0 (2) takes the form 

(6) u 2  = - 2 2 s a ! .  

Here s is a characteristic magnitude with dimensions of velocity. It is given by the 
following expression 

s2 = {[2 sin2(qd/2)]-' + (u&d2/2c2)~[2  sin2(qd/2) + (S~/C)~E]-~}S$.  (7) 

We see that in the case of oblique incidence (i.e. for finite wavevectors in the layer planes 
and for qd # 0) the frequency wo, defined by (3), represents the frequency at the point 
where the curve w = w(k ,  q)  intersects the line a! = 0. If the condition C2d 9 2c is 
satisfied, then wo lies below the electron cyclotron frequency wH. On the other hand, if 
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51d 6 2c and 51 
cyclotron frequency (wo = wH).  

w o  is 

cq, the frequency at the intersection point is close to the electron 

It is easy to show that the group velocity of the qd # 0 mode at the point CY = 0, o = 

u o  = (2 sin2(qd/2)/[2 sin2(qd/2) + (s/c)~E)](s/c)s/E”~. (8) 

If S2d 6 2c and S2 G cq, then the group velocity uo is much less than C / E * / ~ .  For these 
parameter relations the character of uo depends on the dimensionless quantity EH = 
WH&1’2d/C. (i) If EH B 1, then the group velocity uo is proportional to Ho. (ii) If EH G 1, 
then vo does not depend on the external magnetic field. In both cases (i), (ii) we observe 
a small linear-in-k and increasing oscillation frequency above oH. 

4. Further analysis 

Let us now consider the frequency splitting and the shift of homogeneous ( k  = 0) wave- 
guided magnetoplasma oscillations of a layered electron system. In this case (1) can be 
transformed to the form 

sin(g)/[cos(E) - cos(qd)] = -(2c/Qd)(g * E H )  (9) 
where 5 = oe1i2d/c. A similar Kronig-Penney-like expression has been derived pre- 
viously in the quantum regime [4] and in the semi-classical approach in a superlattice 
system with finite electron layer thickness [5] .  In the particular case qd = n/2 the 
relation (9) coincides with the dispersion relation describing the shift and the splitting of 
homogeneous magnetoplasma oscillations of a single 2~ electron layer in a symmetric 
screened system [13]. This coincidence is due to the fact that the electrodynamics of a 
single 2~ electron layer in a symmetric screened system is equivalent to the electro- 
dynamics of a periodic array of 2~ electron layers with surface currents oscillating with 
a difference of phase of n/2 between adjacent layers. 

In the case when qd 4 1, and assuming that the excitation frequency satisfies the 
inequality E G 1, the dispersion relation (9) takes the form 

= w H ( c q ) 2 / [ o ; l  + (cq)21 (10) 

which is just the dispersion relation for the helicon propagating along the superlattice 
axis [4]. Under the assumption wpl B cq, the helicon frequency is o - (c2q2)/oH, where 
0, = ecqo/Ho is the Hall conductivity of the 2~ electron gas. Under the conditions of the 
quantum Hall effect (see for example [17]) the helicon frequency in a superlattice shows 
plateaus. This result has been widely discussed elsewhere [&lo]. 

Let us analyse (9) under another parameter condition oH B c q / d 2 .  In order to 
understand the distribution of the starting points of the dispersion curves of the wave- 
guided type let us analyse the graphical solutions of (9) with the aid of the intersection 
points of the functions F,(E) = sin(g)/[cos(E) - cos(qd)] and F2(E) = -(2c/ 
S2d)(g t E H )  (figure 1). We see that the interaction between wave-guided electro- 
magnetic modes and collective excitations of the layered system leads to the appearance 
of a shift and splitting of the frequencies corresponding to the asymptotics of the function 
F , ( g )  (l/Fl(g,,) = 0 for on = (2nn + qd)c/dd2,  n = 0 , 1 , .  . .). The behaviour of the 
indicated shift and splitting depends on the positions of the frequencies CO,, with respect 
to the characteristic frequency oH: 
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qd Zn-qd 5 
Figure 1. Graphicalsolutionof (9). The thick (thin) continuouscurves represent the functions 
Fl(E), (F2(E))  defined in the text. The chain lines represent the asymptotics of Fl(6). 

(i) If w, < wH,  then one of the split frequencies is localised above the frequency w,. 
On the other hand, the second split frequency lies below w,. 

(ii) If w, > wH, then both split frequencies are localised above o,. In this case the 
gap existing between the split frequencies decreases with the increase of the number n 
characterising the wave-guided mode. 

We see also, that as a result of the interaction of the electromagnetic waves with the 
cyclotron oscillations of the layered electron gas, the electron cyclotron resonance 
frequency wH shows a shift, but it does not undergo splitting. We see that the shift of wH 
is positive (negative) if wH lies below (above) the corresponding nearest zero of the 
function Fl (g ) .  In the case when wH coincides with this zero, there is no shift of the 
cyclotron frequency. 

Let us assume that the parameter relations wH + cq/el/* and R < wH take place. 
Then (9) exhibits solutions corresponding to frequencies much lower than the electron 
cyclotron frequency, but showing a different, in comparison with helicon modes (lo), 
dependence on the external magnetic field. These frequencies can be expressed with the 
aid of a series expansion on the small dimensionless parameter Q / w H .  In the first 
approximation we have 

w = (2nn  - qd)c/de'12 t ( 2 n a H / e d )  n = 1 , 2 , 3 ,  . . .  (11) 

o = (2nn  + qd)c/de112 t (2naH/&d) n = 0 , 1 , 2  , . . . .  ( 1 l a )  

We see that for R < o H a  strong magnetic field (in the sense that wH + cq/e'/*) causes 
a frequency shift and splitting of the starting points of the wave-guided modes in a 
periodic layered system, depending inversely on the external magnetic field Ho and the 
period of the array of ZD electron layers d .  Since these shift and splitting values are 
directly proportional to the Hall conductivity, they exhibit plateaus concomitant with 
the plateaus under the conditions of the quantum Hall effect. 

It is necessary to remark that in the case of resonance interaction of homogeneous 
( k  = 0) electromagnetic wave-guided modes and cyclotron oscillations of the electron 
system, the frequency splitting is proportional to the square root of the small parameter 
R/wH: A o / w  - (R/wH)'/*. In order to demonstrate this fact let us assume that OH = 
( 2 n  - qd)c/de'l2. In this case the Kronig-Penney-like dispersion relation (9) can be 
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Figure 2. Dispersion curves of the lowest branches Figure3. Same as figure2 details of the oscillation 
of the magnetoplasma oscillations in branches in the vicinity of the intercept of straight 
a periodic array of 2D electron layers: Qd/c = lines (Y = 0 and w = w,,. 
3 x Q / w H  = 1 x 9d = n/3, qo = 
1 X 10" cm-2, m = 1 X lo-** g, E = 13, d = 
5 x low4 cm. The chain line represents the disper- 
sion law w = c k / d 2 .  Inset: splitting of lowest 
wave-guided mode. 

written in the form (w - uH)(o lr: wH)  = Q w ~ / ~ & ' / ~ .  The minus sign corresponds to 
the frequency 

w = W H ( l  zk ( ~ 1 / 2 & 1 / 4 ) - 1 ( n / w * ) 1 / 2 )  

which confirms the above mentioned statement that the frequency splitting is pro- 
portional to the square root of the small parameter. A similar effect of an increase in 
resonance splitting was first predicted by V M Agranovich for the case of resonance 
between excitons in thin dielectric films and surface polaritons (for a review see [18]). 
For low-dimensional electron systems in an external magnetic field resonance splitting 
increasing has been discussed in [13,19,20]. 

5.  Observations 

The deformation (due to the action of a strong magnetic field) of the lowest wave-guided 
modes interacting with the layered electron system is shown in figure 2. The splitting of 
the lowest mode in the long-wavelength limit is shown in the inset. For values of the 
in-plane wavevector corresponding to the limit kd 4 1 the dependence of the split 
frequencies on the wavevector kcan be described with the aid of the following expression: 

= (Cq/&@)(l + 2(kd/x)2) -c QC/2WH&d. (12) 

We see that the split frequencies increase with the square of the component of the 
wavevector k perpendicular to the external magnetic field. 
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The vicinity of intercept of straight lines w = wo and w = c k / d 2  is shown in figure 
3. We see that with the increasing of the wavevector k the dispersion curve describing 
the lowest split branch shows a kink when it approximates the frequency wo. At w = wo 
this curve intersects the line w = ck/E1I2, enters the region a2 > 0 and continuously 
transforms into the dispersion law for the plasma oscillations of a layered electron gas. 
On the other hand, the highest of the split branches does not show kink and does not 
intersect the line w = ck/E1l2, but approximates it with the increasing of k .  We see also, 
that the curve describing coupled cyclotron wave-guided modes shows a small increase 
in k when k < w ~ E ~ / ’ / c ,  but it shows a kink when k reaches the vicinity of the line w = 
ck/E1I2. Therefore, we can state that in a system with small concentration of the 2~ 
carriers (in the sense that Qd/c  1 )  the behaviour of the dispersion curves can be 
explained as a result of the intersection of the wave-guided dispersion curves with the 
dispersion curve corresponding to the cyclotron oscillations of a layered electron gas. 

6. Conclusions 

The dispersion relation for magnetoplasma oscillations of the wave-guided type in 
semiconductor superlattices has been presented. The behaviour of these modes in the 
close vicinity of the line w = ck/E1/2 has been discussed. The frequency shift and splitting 
caused by a strong magnetic field has been studied. 

We have demonstrated that resonance modes whose frequencies are smaller than 
the cyclotron frequency can propagate, under relevant conditions, even in the case of 
oblique incidence (i.e. by including finite wavevectors in the layer planes). 

In discussing the perpendicular propagation of the collective modes we observed a 
low frequency mode depending inversely on the external magnetic field. At this point it 
is necessary to outline that, although both helicon and wave-guided-type modes are 
contained in the same Kronig-Penney-like expression, they have a different physical 
origin because these resonances take place under different parameter relations. This 
situation leads to the fact that conditions for the observation of plateaus in frequencies 
(11, l l a )  are different from those necessary for the observation of the corresponding 
plateaus in the helicon frequency. In fact, as Vagner and Bergman have shown [lo] ,  in 
a superlattice with a small concentration of electrons, low frequency helicon waves can 
be observed by employing small values of q under the condition that plasma frequency 
must be higher than the cyclotron frequency. For the frequency shift and splitting 
described by (11, l l a )  the last limitation is lifted because the condition w H  % Q is 
essential for the definition of such shift and splitting. In order to satisfy the parameter 
relation w H  * c q / d 2  we can take sufficiently high magnetic fields: in this case it is not 
necessary to employ small values of q. This means that it is not essential to use a 
superlattice with a large number of layers in order to observe the described modes (11, 
l l a ) .  

We should mention an important difference between ‘edge’ modes and electro- 
magnetic excitations described by (9). For the description of the latter it is necessary to 
take the retarded effects of the electromagnetic waves into account. On the other 
hand, the existence of ‘edge’ magnetoplasmons is connected essentially with the loss of 
translation invariance of the electron system. It is clear that the behaviour of ‘edge’ 
modes does not essentially depend on the retarded effects. 
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The frequency splitting described by (11, lla) is associated with the Faraday effect 
for electromagnetic waves propagating along the direction of the magnetic field per- 
pendicular to the electron layer planes. Let us remark that the damping of the mag- 
netoplasma oscillations in a layered system for o + on, o H r S  1 is determined 
principally by the dissipative conductivity of a 2D electron gas: U,, - u , ~ / ( o ~ z )  oxy, 
i.e. the splitting of the resonance lines exceeds their width. 
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